
()JJO ~ C _

I1~ AL ati hJill

oil; filf m"

jliLcarneMGNM uonift~zsty

I db Cus
TWOsv.F

Od1KW

Nad

PO O

/l

N2

Technical Memorandum
EW4.TM149 p! -bw IM

Intolllgent Aslstance without Artificial Intellgence

Gall E. Kalser*
Columbia University

Peter H. Feller
Software Engineering Institute

A p-rv fr PubMW Rebese Drftrb~mo UnfUn~ud.

Tb paper was writen while Dr. Kaiser was a VWsn CofAe Sctentlt at the Software
Engner ng tno e, Carnegle-Melkn Universty, Pittsburgh, PA 15213.

The developmeno and makenance of S..hLE is suppotled In part by the Unred Sat"e Army,
Softwwa Technology DevelopmeNt Dv•lon of CECOM COMMIADP, Forl Moinoh, NJ and in
per by ZTI-SOF of Siemens AG, Munich Germany.

CopyrIgN (C). Peter H. Feller and Gal E. Kaiser

. ~Tab of Contents

M A G~scue 3
Un- D ue e 3

3 Peogr .mimng Ass*stanc 4
&IN Smwslng I
U. Edl~ng 5

&35 Error Detection aid Error PspoflngS

L3 Coe* Gesw won arm Lk*In 7
l 16)" 7

4 Deeoment and M~ntenenc Assistance

&21 Expevomuntel D&Mause
U. Transametkm 9

4A4 Change Logo 10
4.5Mk~lrteimce ni mCode 10

5 ioiplmentatlon 11
S Related Systems 12
7 Conclus~on 13

Ackrowledgements 15
Rofornces16

MKIC 'IAN

Avollabfllty Codes

Dist Speo CD

Ust of Figures6
Plgur 1: Database of Software Objects 4
Ponur 2: Expeftmntal and Pub~c Databases 9

If

-'7-7~~,-

5 - bnitefignit Assisftanc without Artficial Intel~lgencO

'WIL Kaiseirl

Pessr.IFliec

is aCTý , disftriutd, mnduwlue software enginerin emironoMetha behave so
an bkotolgrit asealazr SMuIL pressnts a 1lsiss snvlrmnmsnr, derives &Wd tralnsforms; dafta to
shelter user fromt enfteri rs&"ndant ifrAtin, autmatically Irwolces rOgrunming; tools, "n
m*Iv* Pwpeitoate In Vie softwar developmetad & mainltenano prooms. Unlike otwheinel-

~sWassistants. SMU is not a rulebesed environmer: be knowlsdqe of softwar objets and the
pruoWom-ng proesm is hardooded lifto fte environment We describe Swre funlionaifty ari

* spl.I how we a&4*sv~d this funciona~y without rollance on artf licel luegence technology..-q -

I itroduction
In 1973, Winograd dlacusae his dreamn of an inelligent assisant for programmers 1291. More
recenly, aalfcla hInefilgence, researchers haves extended programning langage and environ-
.iint (prmarly Usp envronments) with n~owldge "Aot the relationships among program units
[28 and the rules governing the software development process [3,1, 221 In an attempt to turn the

dmrea fto malty. The resutln systemsl support 'exploratory progamming' by an Individuial
progniimr very well [211. but they do not provide the assistance, necessary to mianage large

scbdevelpment and mainteantrce. However, as Al projects, such sq 'expert systems', have
becom larger and commerciafly viable, researchers hae" fumed their efforts towards deeloping
this kind of asuistance [111. 181, a&M we believe they will produce excelen results.

In the meantime, k Is possble to 6uild production-qlualty software eng**"eeringevimnmen that
provide seemin~gly Intelligent assistance without equirling new breakthoughs In Al research.
Themre isalready (at least) ane such systerm-4he-Software Management and hIremenintaI Lan-
guage Editing systm (SmILE)--that proads seemingly'intelligent, Interactive support for teams
of software developers arnd maintainers. SMIL does not use artificial Intefllgence techniques; It Is

* not even written in Lisp. SMaLE was written In C and rune on Unlxym.

Although SmIL Is sevral years old, It has not been discussed In the litrature, except In ack-
nowledge"ents by researchers who used ft to develop their own systms. SMILE was developed
by one of the auhors, starling.In 1979, orIgi nally as a tool for developing research prototypes for
the Gandalf project [183; It ltas been used extensively by both authors and by many others since
1960. SWni has been refledon by the Gandalf and Gnome[7M projects at CMU and by the
Inscape project [1 71 at AT&T Bell Labs; It has been distribued to at least forty sites. SMILE

'Ti po a .towieD.Kie war a VIalng Compuler Scimnir dt lie BoftwereEngkuswmng Inaflule.

poemsPes f crucal test of supporting its own maktenance. The Pufpose Of ti paper Is to
prset fthegolsof SmiLE and eplainowteywere achieved.

Tie WOrWin. high-evel goals of SMIL were aL folow.
"* To hide the fie systm and the operatin systm from the users. SMLE Presents a

11elm ewnvmvent'; tha III, SMILE exposes Its users only to the lgcal structure of
Owe tinget softwaire systm. The normal alternative Is for users to deal with the
WWWWca storage of the software In terms of directories and files, which often do riot
correspond nicel to the logical structure.

"* To sheter the users from the tedious task of maintaining redurmdan wnormation.
SMIL requires Its users to entar each item of information only once; it automatically
WUaneloinme the data ae needed by tools. SMILE derives necessary bInormnation that
cam be calculaed from the data supplied by users.
'To automate kwocatlon of tools at appropIriate pokits. SMILE wasssts the users by
sulomticially performing trivial software development activities such as caling grep,
ftP, cc, make, and other Unix utilities [121 with tie appropriate arguments at ap-
prpral:ae times. In some cases, the tool is Invoked as soon as ftskL hipus ready; in
othe case, the tool Is not called until Its results are required, such as f~p answer a
user query or to provide input to another tool. StILE hides the parllculariles of Jnlx:
aid presents a uniform programming model different from -the model Imposed by
UnbL

*To actively participate In the software development and maintenance process. SMILE
is an Interactive systm, and nil programming RctlIles take place within the environ-
ment. In addition to calculating auxiliary Information and automatically Invoking tools,
SMILE anticipates the conseqjuences of user actions and automatiall presents aW
poup 11t1 Warning messages.

To be mifI~il robust and relable for supportin relatvel larg academic
development projects. It automatically recovers from inconsisient stastes alter user-
Initiated aborts and machino crashes, It also stores inormation redrtudantly to sup-
port recovery from disk erro* or its own bugs.

Al of these goals have been achieved. SMILE maintains source code, objec code and other
softar development Information, In a database mapped onto the Unix fNo systm. Knowledge
of software objects and a model of the software development process are hardcoded Into SMILE'S
commands. SMILE Incorporates a large collection of Unix utilities. plus several special tools
deveiopec as part of the Ganduif research. SMILE has supported the simuftaneous activities of at
least seven programmers, and the largest software system develope- and maintained In SMILE
has approximiately 61,000 lines of source code [13).

The following sections present the goals and achievements of SMILE In more detail. 'Section 2
explains SMILE's external architecture. Section 3 describes how SMILE assisis Individu~al program-
mers, while Section 4 describes the facilities oriented towards projects Invoiving many program-
mers and lang iffetimes. Section 5 discusses SMILE's Implementation and current statue. Section
6 compares Sial to other software engineering environments. We concklud by summarizing the
slgnlf'.cance of SMILF as an example of Intelligent assistance without artificial intelligence.

* 2

. ~2 Aichlbtscmr
S 1BEi Utended for use by small torns; of programmers (5 to 20) developing aOW maktahnng

nief1m~te software systms (10,000 to 250,000 Wmne of source code) written In C, taking
namucum advaitage of the Unix fe systm and utkhL.

L2 IGC

GC,(Ganda# C) [281 Is an enhancemen~t of C that fists the typ s of formal parameters within the
arurrmert Id (as In Pwascl and provides a module interconnection language (MIL). The MIL
deflines modules consisting cf flour types of source code objects (called Items): procedures,
varliables, types, and macros. Each module hes an Ibriport Ist Indicating the tems reqlred from
othe modulej and an export Nat lindicating the Romem acceassble to other modules. GC was
adopted by the Gandal project for all implemrentation efforts. SmL! supports GC, but automati-
c*i transforms Source and header I'les fhrn standard C to GC and We ve=~ as needed to
imort existing source code aind to take advantage of C-specfic programming lools. Throughout
the red of this paper, we mean "GCO when we say TC.

2.2 Dftabase

Smu~ maintains all Wrormaetin about a software system In a database sim~ilar to the 'objectbases'.Q ~of mome recently developol programiring environments (2. 15]. Each objec has several at-
tributes. representing anxiliary Wrorrnation, and is typed, enabling SMILE to provide object-
oriented commands that apply typospecific tools.

A dallsase consists of one -or more 'projects', each represeNting a distinict software systemr.
Moat database"scntin exactly one project, so we say 'database' and 'projec Interchangeably.
A project contains a numb~er of Woodules' corresponding to GC modules. Each module contains a
set of proedres, a set of valriables, a set of type definitIons, a set of mnacros, a Nat of Irnport
Rom$, and a fIst of export Items, as Illustrated In Figure 1. The source text of procedures, vail-
Wbes, types, and macros are written In GC. Each mtdulo and Rem Is attributed with status
Inormation, such'as whether or not It has been compiled since it was last modified. Modules also
contain object code, but this Is never explicitly visible to users.

2.3 User Interfwae

SMILE's user Interface is script-orlentei, and does not take advantage of win~dows or menus.2

However, sorry tools Incluided In S~mLE, e.g., screen-oriented editors, behave differently for bit-
mapped screens than for dunb terminals.

2The woricabadon imlmentaiions of Smuu do support windows. In perftula', a user con modify a database in. one
window while brzwslng thrwjgh the datmbev* in a second, rmad-only window; Se Section S.

3

Ehd~ nn

bow bt: PS b"m Ms'..

FgRpm 1: Database of Software Objects

Th. user interface Is Iriendy and hi iJdes on-mne help faciliths. It ýis riot necessary to remnember
eihrcommands or argumeants. The, qes can type a carriage-return after entering any pait of the

command fine, and SuILE wM prompt, one at a time. for remaining arguments: each prompt
hidicfeg a default value booed on the uses most recent sakt~~tes, and the use ty" a carriage-
return to accept: this defaull. If the user types wr at any point, SMILE NOt the currently valid
alternaivee accorilng to the user's context. If the user Instead oentem "her,, then S:ALE explains
the selected conmmand and its argument. The user can also hit the interrupt key to any prompt to
&Woi the current commnand. SMILE permits the user to abbreviate commands and arguments of
commends to the sholetW unambiguous form, and prompts with the possible choices I an ab-
breviation Is amibiguous.

3 Progmiranl~ng Assistance

S'4U assists indMcha~s In wv'ing programns. it maintains C source code, object code, aild the
statuss of these objects in its database, and automaotically performs menial devek~rnet actwtles.
For example, it warns the programmer of the implications of changing the specifications of source
code items, and it automatically recompiles after changes.

4,

sl MWU

Smu eps te ur navigate through a e. vare system. The user ~iects a particular
modub-.-t user's tcus-which Is then Irdcated in SMu•'s top-level prom . SMILE assumes
thao further commanda refer to this module and Its conteuts until a different module ts selected.

Browsing is objct-orltnted, In the sense that SMILE aulomatlcaily Invokes the appropriate viewing

tool arcooo;ng to the type of the seleced objeot. For C source code, this Is normally a screen-
oriented text oditor an earlier version of SMILE also provided a syntax-directed editor. Although

4 SMILE ammues all ccffmnds are with respect to the current focus, it can shift focus automatl-
caly a the need arlses. For example, If the user asks to visit an Rem that Is not In the current
"module bIut is in some othw module, SMILE chanpes the focus before Invoking the appropriate
viwe¢ tool

SmLE also supports general searches. A query can apply to an individual kem, a module, or the
entire database and SMLE can further filter the results of queries to display on; Rems of a par-
Ucular we (Imort Item, procedure, variable, etc.) or only Items that match some pattern. Pattern

Nmatcing can be applied to the name of an Rem or to Its source text, and a search can be applied
to either the definition or usage of hems, or SMILE can generate a full cross-reference table. The
results of queries are displayed on the screen In the form of a transcript, which can be scrolled if
SMuI ' run from within a text editor that supports user shells. SMILE can also direct its answers
to an external file or a printer. SMILE remembers past activttes on a user-by-user basis; this,supports, for example, a special option for the printer to spool only those RIem that have changedsince s prI•ed by the particular Lser.

3.2 Edltng

SMILE creates and deletes modules and Items within modules. I the user asks to remove an
Ihem that is In another module, SMILE requests confirmation before automatically changing focus
to the other module to carry out the command. Thus, SMILE is forgiving of minor user errors. The
add command requires the type of the new em; If this Is not given, SMILE prompts for the
missing argument. SMILE Invokes the type-specific tool, and the i-w-leve' commands provided by
the tool ars used to construct the content of the item. If the user enters a command to write,
save, save-and-exit, efc., then the new Item Is stored In the database; If the user tslls the tool to
abort or exIt (without saving), etc., SMILE aborts the original add command. SMILE does this by
monitoring the tool; no changes to the tools themselves are required.

Similarly, an existing item can be added or removed from the imports or exports list of the current
modulo. When a new item is created, SMILE automatically isks the user whether or not it shou:d
be added to the exports list. When an item Is removed from the exports, SMILE warns the user if It
is imported by other modules and requests confirmation; if confirmation is given, it automatically
removes these imports as well. When a user tries to delete an existing Item, SMILE mminds the
user If It is exported and requests confirmation before removing the corresponding Item from the
export list.

5

The user can make changes to iems through the edit and change commaL;..; SMILE invokes ihe
appropriate eding tool. Edit restricts the us6r to making local changes to the body of an item,
whee change allows the user to make changes to both the specification and the body, which
may have side effects on other items. For example, edit invokes the editor tool only on the body
of a C proceduro; If the tool s~pports mu~ltile windows, then the header of the procedure Is
duplayed for reference In another, read•only window. In the case of a C variable, edit permits
the user tj modify the Initialization, bfL not the actual declaration. The eA coman-d does not
appy to types and macros, because any modification can affect usages.

Sometimes changing the specification of an item has Implications beyond those anticipated by.
the user. Therefore, SwLE always Informs the user of potential problems before the damage Is
dons. When the user selects the change command, SiMLE queries Its database to find all the
other Ioems t may be affected by the proposed change and iWorms the user of the extent of
this change, in terms of how many other Items might subseq'jertly have to be modified to main-
taln consistency; It displays the actual dependencies on request. The user can abort or go ahead
with the chmge with full knowledge of the Implications.

3.3 Error Detection and Error Reportlng

After a user adds, removes, or modifies an item, SMILE supplies raM feedback regarding static
semantic errors. The semantic analysis Is applied only to the changed item rather than to other
Items affected by the change. SMILE propagates the change by updating the status information
for dependent items. If the user requests it, SMILE submits these for analysis; this is explained in
the following section.

The analyls is performed In a backgrourd process, so that th e user does not have to wait for the
tool to complete before continuing other activities. When processing completes, all error or warn-
Ing messages are saved as an attribute of the current moduie (the focus), and the prompt is
changed to Indicate the errors. The uset can Ignore the errors, or ask SMILE to display the
messages; thus, SMILE separates error detection from error reporting. Both the messages and
the visual cue In the prompt remain until the user edits the offending item, so the user does not
need to remember the particular errors or even the fact that there are errors within the particular
module. It Is less Intrusive to Indicate errors by appending a notice to the prompt than to display
the errors themselves. An earlier version of SMILE dumped all the error messages on the user's
screen as soon as the tool completed. This behavior was judged unacceptable because it inter-
rupted the user's activities; the user was forced to read the messages then and remember them,
because they were not stored.

3.4 BookkeepIng

SMILE maintains status Information for each item. For example, each C item ts a status field
that indicates whether or not its static semantic analysis Is up to date, whether the analysis was
successful, or whether analysis Is in progress In the background. SM;LE maintains the correct

]

value or the status field. Furthermore, SMILE automatically propagates changes to items by
updating the status field of other items that mlgN be affected by the change. The user can
examine the status Information for any Item or display all items with a particular status. A user
night use this Information, for example, to request re-analysis of a particular Rem or all e.ems
affected by a change or to look for Items that sti6 have errors and need correction.

SMU performs code generation by compiling at the granularity of a module. Therefore, It main-
tains a status field for eaih module Indicating whether or not its object code Is up to date, or being
generated in the background. After compiling a module, SMILE Indicates the resulting status In
this status field. SMILE Invalidates generated code by setting the satus field accordingly under
any one of several conditions:

* a new Item is added to the module;

o an existing Rem Is moved between modules, removed, edited or changed;

*an Rent Is added to or removed from the Import list, and this Rem is actually
referenced by an item of the module;

* an exported item Is changed, and this Item Is Imported Into another module, whera it
Is actually referenced by an item In the Importing module.

3.5 Code Genemtlon and Unking

SMILE recompiles modules and relinks the system as needed. r recognizes several alternativeCnotions of 'as needed". There Is a tradeoff between recompiling immedlaiely after a item of a.
module changes and delaying until the user requests system execution: Late recompIlation re-
quires the user to waft, but earty recompilation may be wasted doe to further changes to the same
module; it also affects response time after enich change. An earlier version of SMILE automatically
recompled as soon as an Item changed, but recompiled only the Item rather than the entire
module. This was changed because the time and space overhead was unacceptable. The
processing performed by the compilation too' after every modification led to slower response due
to the cycles taken by the background job. Space was a problem because a separate object code
file was generated for each item. SMILE now compilos an entire module rather than Individual
Items. This optimization was done without affecting the Interaction with the user.

SMILE automatically generates a makefile, Including the appropriate command lines, and invokes
make to constnrct an executable system. If a file name is given as an argument, the executable
code Is placed In this file; otherwise, standard Unix practice Is followed and the output goes to the
"a.our file in the current working directory.

3.6 Modes

Modes permit the user tu control and adapt SMILE's behavior. Users can set modes explicitly with
a comm,;rld or implicitly In their SMILE proflies. Every mode has a type and a default value. The
boolean Autocompilation mode permits the user to Indicate to SMILE whether it should temporarily
refrain from automatically carrying out analysis and code generation. This is a desirable feature

7

when the user starts making major changes to the application. Another boolean mode rlated to
orpipation Indicates woother or not the compiler should generate more elaborate debugging

Inormation. The Verbose mode indicates the level of verbosity of SuLrI.s warnings and sugges-

Somes modes are used to tailor SMILE o a particular operating envirornment. CMU mode permits
SMIE to take advantage of some special CMU utilities. Home mode defines SMLE's home direc-
toy in the local fil system, and Print mode names the local tool for spooLOg to the printer. SMILE
is also ta)ored by the search paths and other environment variables defined in the users Unix

4 Development and Maintenance Assistance

SMILE assists software teams with their long-term development and maintenance activities. It
€oordinates simultaneous activities by multiple users, encourages reuse of existing code, and
logs source codo changes.

4.1 Resem tlons

SMILE prevents multiple users from modifying the same modulo at the same time by requiring the
user to raseme a module before making changes to the module. f a user tries to modify a
componend of a module that is not reserved, SMILE explains that reservation Is necessary. Only A
one user can reserve a module at a time. If another user attempts to reserve a previously
reserved module, SMLE Informs the user about who has reserved the module; users can also
query reservation status explicitly.

SMLE helps users avoid making Incompatible cha.,ges. If a user tries to change the specification
of an expored item, SMILE checks to make sure that that all the modules that import this item are
also reserved by the same user. It not, SMILE Informs tl,) user of the'r reservation status.

4.2 Experimental Databases

Reservations are always made with respect to a private workspace called an experimental
database. Figure 2 shows the relationship between experimental databases and the public
database, which contains the baseilne version of the software system. The modules in the public
database are available to all members of the software team, while the contents of an experimen-
tal d-tabase are private to its owner. An experimental database Is a Ikgical copy of the public
database; SMILE employs a copy-on-write strategy to conserve space. Only modules reserved in
the current exper;mental database can be modified. Additional modules can be reserved at any
time, provided they are not already reserved by another user. SMILE automatically prelinks non-
reserved modules (in a background process) to improve the response time of system generation.

When a user completes a set of changes, the user gives either the update or deposit command

8

Plgw : Eper*mentl &W Pablic Databases
W oreun ANt t M ~ ""evt oIts toth bc database. Lidt fotai" the reserations, so the
user can make k~rhe changes, wt*ll Capoa removis f & reservations. In either case, Swr~
miaks fte changes avallable to the rest of the softiwa team by. replachn the previous versions
In Owe pubi database wth thi changed mrodiiles from fte expeimnta database. Swui. permit
Susors to beck out of5 arIosed chang" by releasing the curren reservations, so other users can
resewve these m In ftf rginal "tte.

M fth beguwiln of an upiete or a depoef, SoaJ checks the Mtaus of al reserved Items to
ensure that the hae been ~anled aid 'Aorffled ap"o A*l, withou an errors. I there ame
froNwAstencles. Stiu sootis the commarid: olhowiss. G*.LE1 locks the public daftbaae while 4
copies the modified obilros ýaclt Iro the ptbi database. Thus. tqpdae and depMf behave as
transactions wth respect to the publi diataas.

4.3 Tnnmcntone

Every SmuL mmmw1and Is a trasrt~cfton, In the sense that It Is Imnpossible to apply a second
commrand fthn the same database until the first comrmand terminates.3 Background processing
Is coordinated In such a way thiat Its result are 04orded without confiting with the transaction

moe.An earlier version of SMI saved Its Internal state on disk after each transaction in order
to record the changes IF% a filosafe manner. Tha led to poor responsiveness when there *ere
five or more sirr•utaneous users In a rme-shoaring environmont (on a VAXY o 780) and was

.In t WaW mon mwoo, of o u. a uw ca. o in o u.cd p o a danP: woigw 0

Aimng atmt~on, wi• ros~ct o~ S ,nbo

4.3 Ttnsa~tlon

discostklued.4 Currently. SMIL samesState ater the nurnber of fmtnu~oi Indicated by the
ChedkNipint od, and always save stawe before and aOtW commands that caus majo Change$,
such as change, update, and deposil. A use can seecte full state savin by Wieling the Check-
P oin e WN 1. allematively, the user can expkicly giv t4. chkpaiM =111I illdaer pa~lautartNY
Oudatd chanes.

SmIL coordinates changes among the eqxperfneral databasses owned by the member ot a
s***are prooed. A user can add a new modiulei only within an exporknsntal database, but SMILE
reowd the addiltmo In fth pubic database to prover* another user ftrou addng another new
module withi the same name. Similarly, SmILE records addition of W kanw Ients the public
database, since another user may attempt to delete the Itern In a difereon! experimentlal databa3s.
When the pubic database Is "ockd during a tranerlion, othe adiors that ~fec the public
database are blocked until compl~etion of the transaction. Sinc upde ad depoef often take
severa minutes. blocked commands tirr out after thirty seconds and SwlLs adises the user to
try again later. This enable users to peWorm other developrent acdvftoe while they waft.

4.4 Change Lope
When programming tearns are large, 4it s useful to maintain on-Me change log. Whenever a
user updates or deposits the contents of an expeflmentul database, SmIL ptornlx for a log entry
for each modified module. SMILE automatically Includes the user name, the time/date, and the
modulte name with tho text provided by the, user. Users can 3330 append log entries for their
reserved modules at any timew. A user can query the entfre log for a database or only the log for aC
paricular module, and request entries since a particular date andtw by a particular user. SMILE
prevents taumpering with previovs log entries, so a full audit trall of past changes is always availl

4.5 Maintenance and 'Old Codel

As software eystems beooe older, the modular structure tends to degenerate. lnowrt and ex-
port liss grow and rarely shrink, even though an lrrpofted Rtem is no longer used In the In~,rilng
module a&d an expoited Rosm Is no longer used outside the module. -or even inside the module.
Sm~tI assists users in restructuring old systems by moving Itemsi from one module to another and
adjust* the Import& find exports accordingly, by adjusting the Imports and exports througheut this
database to reflect the actual Interconnections determined by cross-references. and by detecting
u~i,.sed r. ms.

SmiLE provides facliflhiss to bring externally deve"oe 'old code' into a database. so It can assist
fvture maintenance and enhancement acivities. SWLE can also oopy modules from one
database to another. SMILE makes It easy to use software mainalined outside of a SMILE

4T1h19 pawfonnano prob~m Is reiluced when 9ýtv runs in a di, Wlbuad W01tlOM sm o v n MRW., "S %oftn 5

,databease: Every moduje and every databs'as iy have a pvuatd whilch Nots external fIles' and
dWf3bmn of OLtsde proceduares; the corresponding oboec code fils and Unix ftrurl are Owed
ki &^Al *mwy Nsoms. The add, remnove, and change commands app to Ibrales as do the
toowelito facillee . Thenm.s of necassary liraftes aft giveni a argumert to the build coom-
mnwd to Inorpoate them' In an executable systm. SMILE he"e uses creaft rew Unix archives
and trarles. I can produc a UnixWd arhve m the C keins In Vie database and can generate a
*a # objec Code fil 00a can be Used Ms a "bar outside SOaLE Or Within ofthe SMIE
dalabas.

5 hipipnmmtafon
SmuL was ortgla* called IPC, for hmwncrmra Program Co~nstuco, hot the naen as won
hanged go SmuL. A protop bV~iiemewutiton was wrItten ins the Unix she language durin

Augus 1971; It was used In Seplebe 1979 to bootsVtra o a more advanced irIplement'~ton in
0G. These too versions ran o~n a POPIN 11170 under Unix Versilon 7.

SmiLE was amo ported to a VAX (both 750 and 780) under Betele Unix, where I suppoirted the
intenelve Ganaf prototype (101 Implementation In 1980O and 1981 and the developmnwt and
minalelnance of the production-quality Gnome envronment starting In 1962. SWsiE was ported to
the Sun Worsl~ationrm In 1964 and to the MicroVAX'm workstation in 1985. The MICIVAX ver-
sion Is distributed by virtue of the Mach variaNt of Unhx 4.3 BSD. The current ln'mentationO c~onsists of 16,000 lines of GC source code, which Is nvallable on requst from the Gandaff
proec at CMU.

Dotalls

Aklhough the mtignal IPC was Inipleinented In the Unix shel language, neither IPC nor the later
versions ol SMILE should be thought of simp~ly as user sheila. SMIL maintains Its own database
of all Wdor~Maton ab~out a software prolect and provides Its own commands for carrying out
dsveiopmert and maintenance activities; In effect, StaLI presents Its own model of the program-
ming Pro'As.

ShhLE maps rts database onto the Unix file system In a hierarchical manner. Each database
correas3or-do to a d~roectr, whtch contains a subdirectry for each, project which Ins turn contains
a subdorectory for each module. Ea&ts moduile directory ookains two flies Nosting the Imorts and
exports, respectively, and four subdfirectod"e, one each for procedures. vardal~s, types, and
macronc. The text of each 46m' is stored In a separate tuel. This mapping to the Ill. system Is not
visible to users. Cross-Wrefrncling information, status, and other derdved attributes are main-
tained In a graph structure. This graph Is dump~ed In binary form to a Yile within the database to
persist between Inviocations of Smut. A backup copy of the graph Is also maintained, but 9 both
the criginal and badwp are corrupted, the graph can be regenerated from the database.

SwitE protects its users from operatin system cashes, which might loave a database In an

Sstoneaele stat. SMILE alomnaicaly checks st database d Ith boorig of every session: U
dimed Iormation such me errormessages or object code has besn lost, SmLt resets status
a ftnatlo to make sure they we rederlved. I the most recent session will this database was
done using a previous version of SMILE k;ef1, SMILE afimtically reormats the graph structure
wid the detabase and adds dersuft values for any new kinds of attrbutes. Appmxroxiuae 30% of
SM 'Es source code is for dsaser ,covery and sel repais

SmuE hides the Lnk file system and Is tools rd utdies from Its userh, wilh the exception that It
Call the uses favorke text editor. The defaul text e1 o at CMU i Efmacs 19). but a dilferest
detail mn be subtiuted at each sie. SMILE lkoes lnt to detect static semantic errors in
source code obocts, cc to compile moduls, and make to generate executatle sy•ems. The
Vw01 of r ft pod SMIes "arches through src tt and oter objects.

We have not modified thes tools; Instead, SMILE aomlalcallyrani a obWeso into the fornat
required by each tool. For example. SMLE combine the Hems of amodule Ito a single file In the
Wo order for Input to the compiler. This made It easy to port SMI.E from one version of Unix
t- another and to Use new tuois as they became available (e.g., IN rpaced cc for static seman-
tic malysis In 1962) wtthout these changes being visible to the users. We believe It would not be
difu to port SMILE to a non-Unkt operating system, providing It suod s ar tpolu; the only
local tools that are mandatory are a text editor, a C compler, and a Irer.5

6 Related Systems

SMU Is similar to kncwledge-based programming envirotnents, aawne programming lan-
quage environments, language-based edftors and software engineorin environments. In the fol-
lowing paragraphs, we describe the advantages and disadvantages of these systems with
resec to SMI.

KDnowleeased Environrfnta: The CommonLisp Framework (CLF) 161, Peftne.1 (221 and
ofther knowledge-engineering environments can provLw SMLsl-e automation via
condltionraction rules [51. However, they cannot recognize the alternative, results of actions, e.g.,
the compiler may terminate successfully, producing object code, or unsuccessfully, producing
error messages. None of these environments support mul•tple simultaneous users. On the other
hand, SMILE Is not extenilWbe, so i Is not as easy to add new kinds of obWet and new tools.

Larouaoe Envirorrents: Advanced programnf m languages such a Interlrsp (261, Loops
[231 and Smrmalk-80% [18 include run time envformoen•s that are Idtistinguishable from Aingle-

user programming environments. Although they provkoo SMILE-like facltles, these are strongly
tled to the p1u-,wamming language. The implementation of SMILE Is specific to the GC, but It
would not be very d"Ircult to re~rrlement for another conveWrtal programming language.

%a,* vou•irw of Lm ud only ftI bol mdutli rwoon by Unl, bWiut emi't• Wlonsao kwk ths , too
for 1&Wnguag..ottnbd poog. a "i ing ai~on% nts. The" weft tom ol riftg aj Ow f fteu desal rin Cis pse1

12

* provided corresponding tools were available. However, language environments can Integrate
debuggig facilities with the other tools.

IJrnguga-Based Envirnments." Language-based environments add many of the advantages of
lnguage envionments to conventional languages such as Pascal. The Synthesizer [25] and
Pecan [191 are examples of specific environments, while the Synthesizer Generator [201 and
Gandalf are systems for generating such environments from formal descriptions. Most language-
based environments provide advanced user interfaces with menus and pointing devices, and
perform various activities in response to programmer actions, but they are unable to anticipate
the potential results of actions and warn users before the damage is done. The practicality of
these environmenta Is limited, since the entire software system is maintained as a single abstract
syntax tree; fjrther, It Is difficult to Incorporate existing programming tools into these environ-
merits.

Softwar Ernaineerin Envronments: SMILE is most simlar to Cedar [271, DSEETM [141, Arcadla
[241 and other large-scale environments for software development and maintenance. Like SMILE,

these environments provide an Interface between programming tools and the user on the one
hand, and between programming tools and the software database on the other. Such environ-
ments typcally provide more advanced version cornrol and project management facilities than
SWILE, but they leave Individual programmers to the standard editfompile/debug cycle supported
by traditional tools.

li 7 Conclusions
SMILE's primary contribution is the apparently Intelligent assistance that spans both the activities
of Individual programmers and the coordination of multiple programmers. SMILE provides this
assistance by

* maintaining all Information about a software project In a database;

e Integrating Unix tools Into a new model of development and maintenance that hides
the particularities of Unix tools;

* actively participating in the development and maintenance processes by deriving
data when possible from previously stored information, automatlnq the Invocation of
these tools and anticipating the consequences of tool processing;

e Itnposlng a structure on software development activities that permits it to 'know' what
the programmers are doing at all times, to 'Infer what they are likely to do next, and
to 'Judge' what it can appropriately do for tham;

e recovering from external and Internal failures and repairing its databases automati-
cally, making It sufficiently robust and reliable for production ulte.

SMILE provides this assistance without a knowledgebase of rules describirng the software develop-
ment process. Instead, certain 'common sense' about software development activities has been

*We use Out Mrm 'language-based environmenr synonymously whh language-basod odtot, 'sructure-oriented
enwlroiwnonr, 'structure editor-based eonvkxoinr, 'syntax-dWrcsd edtor, ek.

13

PiOgriWiYWd dhCrectlyko the envkvmnrnr, resubin in a prchdxom-quaay inteligent assistant
OWU seveal projects have relied on to develop ad mangtain ftie software.

14

O Acknowledgements
In addition to the authors, other past and present mrentiers o the 3andaif Project at Carnegie-
Melon University have been active In SAILE'S evolution over the past seven years. Raul Medina-
Mora and David Notkin were Involved In the early development. Batbara Denny, Bob Elison and
Charlie Krueger have been responslie for maintaining and enhancing SMILE at various times.
Many other people have developed tools that are presently Incorporated into SMILE. Nico Haber-
mann Is the principal Investigator of the Gandalt Project.

15

References
[ll. Robert Balzer.

A 15 Year Perspective on Automatic programmi~ng.
IEEE 7)anSActon On Software Engineering SC-1l1(11):l 257-1 268, Novembter, 1985.

[2 Robed V. Balzer.
Livin In the Next Generation Operating Systemn.
In PrOCeed ngs Of the 10th Wor0 Corrp~ter Con1greSS (IF7P Congrms W6). Dublin,

lreiand, September, 1988.
To apear at a book published- by Springer-Verlag.

[31 David R. Barstow and Howard E. Shrobe.
From Interactive, to Intelligent ProgramtrIng Environments.
OteraciA'e Programming Environments.
McGraw-Hill Book Co., New York, NY, 1984, pages 558-57.

141 David R. Barstow, Howard E. Shrobe and E~* Sandewall.
Ineawctie Ptogramnoft Environments.

McGraw-Hil Book Co., Now York, NY, 1984.
13 Lee Brownston, Robert Farrell, Elaine Kant and Nancy Martin.

Proi'amlning Expert Sy'stems In OPS5.
Addison-Wesley Publishing Co., Reading. MA, 1985.

161 CLIF Project.
Introduction to the CLF Environment.
March, 1986.
USC Information Sciences Institute.

13 David B3. Gatian and Philip L Miller.0
GNOME: An Introductory Programming Environment Based on a Farrfly of Stnucture

Editors.
In ProceedIngs of the SIGSOFT/SIGPLAN Software EngineenrVn Syoslum on PrkaIa*i

Software Dvvelopment Environments. Pittsburgh, PA, April, 1984.
Proceedings oublished as SIGPLAN Nlotices, 19(5), May, 1984.

[81 Adele Goldberg end David Robson.
SmalftUA-80 The Language andF its Implementation.
Addison-Wesley Publishing Co., Reading, MA, 1983.

193 James A. Gosling.
Unix Ernacs
Carnegie-Mellon University, Deartment of romputer Science, 1982.

[10J Gall E. Kaiser, Robert J. Ellison, David B. Garlan, David S. Notkln and Steven PopovIch.
Garidalf User Manual and Tutorial.
In The Second Compendium of GandaI.1' Documentation. Carnegie-Mellon University,

Department of Computer Science, 1982.
(111 Beverly L. Kedzlerskl.

Knowledge-Based Project Management and Communication Support In a System
Development Environment.

In Proceedings of the 4th Jerusalem Conference on Information Technology. Jerusalem,J ~Isrvel, May, 1984.

18

[1,21 Brian W. Kernighan rind John R. Mashey.
Tho UNIX Programming Environmert.
Softwa" - Practice and Experience 9(1), January, 1979.
Appears ki IEEE Comp~uter, 12,41), April 1981 and In [43.

[133 Charlie Krueger.
Privat oommunication.
August, 1986
Regarftn larges system (ALOE) maintained In SHLE.

1143 David B. Leblan and Gordon D. McLean, Jr.
Configu ration Management for Large-Scale Software Development Efforts.
In GTE Workshop on Software Engineering Environmrents for Prog'amrrdng In the Large,

pages 122-127. June, 1985.
[153 Mom R, Nestor.

Toward a Persistent Object Base.
In Proceecffngs of the IFIP WG 2.4 International Workshop on Advanced Programming

Envftonrren~ts June, 1988.
To appear as a book published by Springer-Veorlag.

[163 David Notkdn.
The GANDALF Projec.

Yebumal of Systems and Software 5(2).-91-1OS, May, 1985.
(173 Dowayne E. Perry.

Position Paper: The Constructive Use of Module Interface Specifications.
In Third Interrational Workshop on Software Speciffkaton and Design. London, England,

August, 1985.
[IS,' C.V. Ramnamoorthy, Vijay Garg and Rajeev Aggarwal.

Environment Modelling and Acti"t Management In Genesis.
In Proceedngs of SoftFairi: 2nd Conference on Software Development Tools,'Tech-

NA'uea, and Afternatives, pages 2-10. Decernber, 1985.
1 193 Steven P. Reiss.

Graphlcai Program Devekipment with PECAN Program Development Systems.
In Proceedings of the SIGSOFr/IGPLAJV Software Engineering Syrnloosium on Pra~cticl

Software Detvelpment Environmntns. Pittsburgh, PA, April, 1984.
Proceedings published as SIGPLAN Notices, 19(5), May, 1984.

[203 Thomas Reps and Tim Teitelbaum.
The SyriViesizer Generator.
In Proceedings of the SIGSOFT/SIGPLAN Software Engineering Synyposium on Practical

Software Development Envfrr"nrrents. Pittsburgh, PA, April, 1984.
Proceedings published as SIOPLAN Notices, 19(5), May, 1984.

[211 B. A. ShONl.
Power Tools for Programmers.
Datamation Magazine, 1983.
Reprinted In [41.

[221 Douglas R. Smith, Gordon S. Kotik and Stephen J. Westfold.
Research on Knowledge-Bat~ed Software Environments at Kestrel Institute.
IEEE Transactions on 54)ftware Engineering SE-i 1(1 1):l 278-1295, Novermber, 1985.

17

f23 Mai Stefi and Daniel G. Bobrow.
Obodc-Orlented Programming: Themes and Variations.
AlA4Qazkl 8(4):40-62, Winter, 1986.

1243 Richard N. Taylor, Lori Clarke, Leon J. Osterweil, Jack C. Wiledon and Michal Young.
Arcadia: A Software Development Environment Research Project.
In 2nd International Conferenw on Ada Applications and Environments. IEEE Computer

Soctet, Mi"m Beach, FL, April, 1986.
[23Tim Teitelbaum and Thoras Reps.

The CorneA Program Synthesizer A Syntax-11rected Programming Environment.
Communickations of fte ACM 24(g), September, 1981.
Reprinted in [4].

[23Warren Teltelman and Larry Macinter.
The lnterllsp Programming Environment.
IEEE Con'putrl4(4):25-3,4,.ApiP. 1981.
Reprinted In [4J.

1273 Warren Teltelman.
A Tour Through Cedar.
IEEE Software 1(2) :44-73, Ap., 1984.
Also appears In Proceedings ol ,he Seventh International Conference on Software En-

glnweeeng, 1984.

(281 Walter F. T"ch
Software Development Control Based -on Module Interconnection.
In 4th International Conference on Software Engineering.' September, 1979.Ow,

[291 TerryWinograd.
Breaking the CorrpiexIty Barrier (Again). qV

In Proceedings of the ACM SIGPLAN-SIGIR Interface Meeting on Programming Lan-
guages - lnformathjn Retrieval, pages 13-30. Gaithersburg, MD, November, 1973.

Reprinted In [41.

18

,,_U.IT. C,.-AF.CATION OF THI'S PAG, ht/sLo

REPORT DOCUMENTATION PAGE
It RdPi SECURITY ClA IFICATION lb. RESTRICTIVE MARKINGS

UNLIMITeD. UNCLASSIFIED NONE
2& SECURITY CLASSIFICATION AUTHOR ITY 3. OISTRIOUTION/AVAILABILITY Of REPORT

N/A . I UNCLASSIFIED, UNLIWITED, DTIC, NTIS
2 ilLASSIFICATION/OOWNGRAOING 9CHEOULE

4. PERFORMING ORGANIZATION REPORr NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

SEI-86-TM- 14 ESD-TR-86-221

go NAME OX POERiORMINn ORGANIZATI ON OFFICE SYMSOL 7&. NAME OF MONITORING ORGANIZATION

SOFTWARE ENGINEERING INST. (it d,.,,s,) SEI JOINT PROGRA)l OFFICE
SEI

6r ADORES$ (Cy. $141.0 ad ZIP Cod*) 7b. ADORESS (City. S-eft *44 ZIP Code.

CARENGIE-MELLON UNIVERSI'l ESD/XRS1
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE

_ _HANSCOM, MA 01731
ft NAME OP PUNOING/SPONSORING lb. OFFICE SYMBOL 9. PROCUPEMENT INSTRUMENT IOENTIFICATION NUMBER

ORGAN:ZATION (it .ueabl.)

SEI JPO ESD/XRSI F19628 85 0003
ft AOORESS (City. Stew mId ZIP Code) 10. SOURCE Of FUNDIROG NOS.

CARNEGIE-MELLON UNtVERSIY PROGRAM PROJECT TASK WORK UNIT

PITTSBURGH, PA 15213 ELEMENT NO. NO. NO. NO.

---------- _- _ __ 63752F N/A N/A N/A
1I. TITLE (Include Security Cliaaifeaio I....

INTELLIGENT ASSISTANCE WITHOUT ARTIFICIAL I TELLIGENCE

12. PERSONAL AUTHOR(S)
nATT. WKATRPR AND• PFTAR VýTTT.pg

13& TYPE OF REPORT I 13b. "IME COVERED 14. DATE OF REPOWT fYr.. Ma., Dy) 15. PAGE COUNT

FNAL _... TO ... SEPTEMBER 1986 18
1B. SUPPLEMENTARY NOTATION

N/A

I?. COSATI CODES IS. SUBJECT TERMS (Continue Oa TtFerSE ifln~e~mT lad idendfy by biock numberb

FIELD GROUP SUB. GR.

i9. ABSTRACT (Continue on erverse ife nctiler'y and identify by blOac number)

SMILE IS A DISTRIBUTED, MULTI-USER SOFTWARE ENGINEERING ENVIRONMENT THAT BEHAVES
AS AN INTELLIGENT ASSISTANT. SMILE PRESENTS A 'FILELESS ENVIRONMENT', DERIVES
AND TRANSFORMS DATA TO §dELTER USERS FROM ENTERING REDUNDANT INFORMATION, AUTOMATICALLY
INVOKES PROGRAMMING TOOiS, AND ACTIVELY PARTICIPATES IN THE SOFTWARE DEVELOPMENT
AND MAINTENANCE PROCESS UNLIKE OTHER INTELLIGENT ASSISTANTS, SMILE IS NOT A
RULE-BASED ENVIRONMENT: ITS KNOWLEDGE OF SOFTWARE OBJECTS AND THE PROGRAMMING
PROCESS IS HARDCODED INJO THE ENVIRONMENT. WE DESCRIBE SMILE'S FUNCTIONALITY
AND EXPLAIN HOW WE ACHI]VED THIS FUNCTIONALITY WITHOUT RELIAINCE ON ARTIFICIAL
INTELLIGENCE TECHNOLOGY

20. OISTRIBUTION/AVAILABILITY OF A STRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UPILIMITEO zSAME S S APT. W OTIC USERS Qj UNCLASSIFIED, UNLIMITED, DTIC, NTIS

22s. NAME OF RESPONSIBLE INDIVIDUA•L 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL
{Include ,4rea Codel

KARL H. SHINGLER 412 268-7630 SEI JPO

DD FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE.

SECURITY CLASSIFICATION OF THIS PACG

